Ground state solution for a periodic p&q‐Laplacian equation involving critical growth without the Ambrosetti–Rabinowitz condition

نویسندگان

چکیده

We study the ground state solutions for following p&q‐Laplacian equation where is a parameter large enough, with denotes ‐Laplacian operator, and . Under some assumptions periodic potential , weight function nonlinearity without Ambrosetti–Rabinowitz condition, we show above has solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Schrödinger equation with periodic potential involving critical growth

The main purpose of this paper is to establish the existence of a solution of the semilinear Schrödinger equation −∆u + V (x)u = f(u), in R where V is a 1-periodic functions with respect to x, 0 lies in a gap of the spectrum of −∆ + V , and f(s) behaves like ± exp(αs) when s → ±∞.

متن کامل

Periodic solution for a delay nonlinear population equation with feedback control and periodic external source

In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides  the extension of  some previous results obtained in other studies. We give a illustrative e...

متن کامل

EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTION TO A CRITICAL p–LAPLACIAN EQUATION

In this paper, we consider the existence and concentration behavior of positive ground state solution to the following problem { −hΔpu+V (x)|u|p−2u = K(x)|u|q−2u+ |u|p−2u, x ∈ RN , u ∈W 1,p(RN ), u > 0, x ∈ RN , where h is a small positive parameter, 1 < p < N , max{p, p∗ − p p−1} < q < p∗ , p∗ = Np N−p is the critical Sobolev exponent, V (x) and K(x) are positive smooth functions. Under some n...

متن کامل

Existence of a ground state solution for a class of $p$-laplace‎ ‎equations

 According to a class of constrained‎ ‎minimization problems‎, ‎the Schwartz symmetrization process and the‎ ‎compactness lemma of Strauss‎, ‎we prove that there is a‎ ‎nontrivial ground state solution for a class of $p$-Laplace‎ ‎equations without the Ambrosetti-Rabinowitz condition‎.

متن کامل

periodic solution for a delay nonlinear population equation with feedback control and periodic external source

in this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. nonlinear system affected by an periodic external source is studied. existence of a control variable provides  the extension of  some previous results obtained in other studies. we give a illustrative e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2023

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.9135